300103 Data Sthliettif@s and A lgorithms

» e '.'1';; ..‘}-"..‘.’.
o

.

Lecture 9

Searching Algorithms
Basic concepts of Trees

Main Content of the Lecture

» Typical search algorithms on a linear list:
= Sequential search for unsorted data

* Binary search for sorted data
" Basic tree concepts
" Binary trees

= 3 commonly used traversal strategies for
binary trees

= Convert a general tree into a binary tree

Sequential Search Analysis

for (loc = 0; loc < length;
loc++)
if (list[loc] == item) {
found = true;
break;
}

= Efficiency: Count number of key comparisons
= Best case: make one key comparison
" Worst case: algorithm makes » comparison.

Sequential Search Analysis

" Average number of comparisons

14+424+...4n

n

It 1s known that

n(n+1)
2

Therefore, the following expression gives the average number of comparisons made by
the sequential search in the successful case:

2

-

1 $ 2wt Talad41) #i41
St

n n

The efficiency then is O(n)

Binary Search

= Performed only on ordered lists
= Uses divide-and-conquer technique

(0] (11 ([2] (3] (4] (5] (6] [7] ([8] (9] [10][11]
list| 4 8 19 | 25 | 34 | 39 | 45 | 48 | 66 | 75 | 89 | 95

List of length 12

|

I: search list >
[0] [11 (2] (31 [41 [S] [e] [7] (8] [9] [10] [11]
list| 4 | 8 [19 | 25 | 34 [39 | 45 | 48 | 66 | 75 | 89 | 95 |

mid

Search 1ist, 1list[0]...list[11]
|<7 search list ——>|

(01 (11 [2] (31 [4]1 (5] [el [7]1 [8]1 [9] [10] [11]
list| 4 | 8 |19 | 25 [34 [39| 45 | 48 | 66 | 75 | 89 | 95 |

Search 1ist, list[6]...list[11]

Binary search algorithm

template<class elemType>
int orderedArrayListType<elemType>::binarySearch
{const elemType& item) const

{

int first = 0;

int last = length - 1;

int mid;

bool found = false;

while (first <= last && !found)

{
mid = (first + last) / 2;

1f {(list[mid] == 1itemnm)
found = true;

else 1f (list[mid] > item)
last = mid - 1;

else
first = mad + 1;

}

1f {(found)
return mid;
else
return -1;
1//end binarySearch

Binary search

[01 (1] (2] [3]1 ([4]1 ([5] ([e] [7]1 ([81 ([°9] [10] [11]
list| 4 8 19 | 25 | 34 | 39 | 45 | 48 66 | 75 | 89 [95

Values of first, last, and mid and the
number of comparisons for search item 34

1

0 11 5 39 2
2 0 4 2 19 2
3 3 4 3 25 2
4 4 4 4 34 1 (found is true)

Binary search

[01 (1] (2] [3]1 ([4]1 ([5] ([e] [7]1 ([81 ([°9] [10] [11]

list| 4 8 19 | 25 (34 | 39 | 45 | 48 66 | 75 [89 | 95

Values of first, last, and mid and the number of
comparisons for search item 22

1 11 5 39 2

0
2 0 4 2 19 2
3 3 4 3 25 2
4 3 2 The loop stops (because first > last)

Efficiency of searching algorithms

* Sequential search: O(n)
* Binary search: O(log,n)

Number of comparisons on average for a list of length n

Sequential search (n+1)/2=0(n) n= 0(n)
Binary search 2logon— 3 = O(logzn) 2logo(n+1) = O(logan)
n/2 n = 2k Note that it makes more sense to
n/4 K = | estimate efficiency of an algorithm
= 10g,N by the Big-O notation than by the

K - n/8 actual number of operations. In

n/16 Number of loops] many cases, the actual number of
. operations is too complicated to
n/2x = 1 compute.

Other efficient searching techniques

* Hashing
* Binary search trees

outdegree is
Py

egree is 1

_—

» s

$4 ind -

Trees
A tree consists of:

= 3 set of elements,
called nodes;

= 3 set of directed
lines, called
branches.

" root: indegree 1s
& ZCrO0.

leaf: outdegree 1s
Zero.

Basic Concepts of Trees

= The number of branches associated with a node is
the degree of the node

* Indegree branch: directed toward the node
* Outdegree branch: directed away from the node

* Family relationship

" parent: a node having successor nodes

= child: a node with predecessors
= siblings: two or more nodes with the same p
= ancestor and descendant

Basic Concepts of Trees...

= A path 1s a sequence of nodes 1n which each
node is adjacent to the next one.

= [.evel of a node: 1ts distance from the root.

= The level of the root 1s O;

= The level of other nodes are always one greater than
its parent

= Height of a tree: the level of the leaf in the
longest path from the root plus 1.
* the height of an empty tree is -1.

Basic Concepts of Trees

Branch

Parents: A, B, F Leaves C.D.EG,H.I
F,C,D, G, H,I Internal nodes B, F

Tree nomenclature

Recursive definition of trees

= A tree 1s a collection of objects called nodes and 1s
defined recursively as follows:

= An empty set 1s a tree, called empty tree

= IfT,, T,,...T, are n trees and R 1s a node, then the
set T containing R and the n trees 1s a tree. Within the
tree, R 1s called the root of T and the » trees are
called subtrees.

Subtree (CAD
Root of

B
NN >
subtree |

O\ © O\ O\ O

Recursive definition of trees

Another notation of tree representation

T ={A, {B, {C, D}}, {E}, {F, {H}, {G}, {I}}}

16

Examples of Trees...

3

by

family tree

17

18

Binary Trees

" Binary trees are trees where the maximum
outdegree of any node 1s two, 1.€., can’t have
more than two subtrees (designated as the left
subtree and the right subtree)

* Binary tree node structure

tempate <class elemType>

struct binaryTreeNode { y data \
elemType data;
binaryTreeNode<elemType> *leftChild; / \
binaryTreeNode<elemType> *rightChild;

£ data data

Why use binary trees?

" Major data structure operations: searching,
insertion, deletion.

* Ordered array: fast in search(binary search),
slow in insertion and deletion (shift elements).

* Linked list: fast in insertion and deletion, slow
in search (no binary search).

* Binary tree: fast in all operations.

19

Transforming a linked list to a binary tree

25

20

Transforming a general tree to a binary tree

21

Search and traversal in a tree

* Breadth-first traversal: proceed level by level
visiting the whole breadth of a level before going
down to the next level.

= Depth-first traversal: always go as deep as we
can to visit the next node.

22

Binary Tree Traversals

= In the case of binary trees, only three traversal strategies
are commonly used; all of them belong to depth-first
methods:
= Pre-order (NLR) : Visit the root, then its left subtree,
and finally right subtree
= In-order (LNR) : Visit the left subtree, then the root,
and finally 1ts right subtree
s Post-order (LRN) : visit the left subtree, the right
subtree, and finally the root

23

24

Binary Tree Traversals...

Pre-order In-order Post-order

A (8le]le]] | & LI[F] lcls[o]| A |[]E[F] [c][o]e | |LI[F]E]|A

(a) Processing order

(a) Processing order (a) Processing order

(b) “Walking” order (b) “Walking” order
(b) “Walking” order

Binary Tree Traversals...

= Algorithms of traversals

template<class TYPE>
void BinaryTree<TYPE>::inorder(binaryTreeNode<TYPE> *treePtr)

{
if (treePtr '= NULL) {

inorder(treePtr->leftChild);
visit(treePtr->data);
inorder(treePtr->rightChild);

}
} // end inorder

25

Binary tree implementation

" Tree node

* Binary tree Operations
= iIsEmpty()
= inorderTraversal()
= preorderTraversal()
= postorderTraversal()
* treeHeight()
= freeNodeCount()
* freeLeavesCount()

Read code: binaryTree.h

26

Binary Search Trees

* Data in each node
= Larger than the data in 1ts left child
= Smaller than the data 1n 1ts right child

Arbitrary binary tree Binary search tree

27

Binary Search Trees

" A binary search tree, T, 1s either empty or the
following 1s true:
= T has a special node called the root node

= T'has two sets of nodes, L, and R, called the left
subtree and right subtree of T, respectively

" The key 1n the root node 1s larger than every key in the
left subtree and smaller than every key in the right
subtree

= [.rand R, are binary search trees

28

Operations on binary Search Trees

" Operations performed on a binary search tree

= Search the binary search tree for a particular item

Insert an 1tem in the binary search tree

Delete an item from the binary search tree

Find

Find

Find

t]
t]

ne height of the binary search tree

ne number of nodes 1n the binary search tree

t!

ne number of leaves 1n the binary search tree

= Traverse the binary search tree

= Copy the binary search tree

29

Operations that can be inherited from binary trees

* Every binary search tree 1s a binary tree
* Height of a binary search tree

" Determined the same way as the height of a binary tree

= Operations to find number of nodes, number of
leaves, to do morder, preorder, postorder traversals
of a binary search tree

= Same as those for a binary tree

» Can 1nherit functions

30

Implementation

" class bSearchTreeType

= [llustrates basic operations to implement a binary
search tree

» Function search
» Function insert

= Function delete

Read code: BinarySearchTree.h

31

Reading

= Read textbook Chapter 9 (first half).
= Read textbook Chapter 11 (first half)

= Downloac
home.

| the demonstration code for practice at

32

