
Lecture 11

Sorting Algorithms

Main Contents

  Sorting problem

  Insertion sorts

  Review of straight insertion sort

  Shell sort

  Selection sorts

  Review of straight selection sort

 Heap sort

  Exchange sorts

  Review of straight bubble sort

 Quick sort

General Sort Concepts

  Sorting algorithms: sort a set of data into numeric

or alphabetic order (ascending or descending)

according to the key of the data

  Performance: time and space complexity

  Time complexity is usually an estimation of the number

of comparisons and moves required to sort a list

  Space complexity is the estimation of required memory

  Performance is assessed under different situations:

worst case, best case and average case

Typical sorting algorithms

Algorithm Complexity of Simple Sorting

  The actual steps of processing can be less than that of the worst

case as given above; e.g. if a pass with no exchanges in bubble

sort, the procedure can be terminated immediately

3n(n-1)/2

3(n-1)

n(n-1)/2

moves

(worst case)

O(n2) n(n-1)/2 bubbleSort

O(n2) n(n-1)/2 selectionSort

O(n2) n(n-1)/2 insertionSort

comparisons

Comparison of Sorting Algorithms

Data Size Bubble Sort Selection Insertion Shell Sort Quick Sort

10,000 2,198 943 615 45 0

15,000 4,895 2,159 1,378 55 10

20,000 8,985 3,883 2,478 99 11

25,000 13,898 6,037 3,895 156 5

30,000 23,356 11,270 6,773 213 27

35,000 15,045 8,304 280 44

40,000 12,912 356 51

50,000 578 43

100,000 2,127 109

500,000 560

1,000,000 1,775

•  Data were randomly generated.

•  Ran on Pentium III 800 laptop.
•  Time unit is millisecond.

From insertion sort to shell sort

  Insertion sort method

 At the beginning the first element of the list forms the

sorted part while the rest n-1 elements form the

unsorted part

  In each pass, the first element of the unsorted sublist is

inserted into the sorted part at an appropriate position

so that this part is still in sorted order

 With all the elements being inserted into the sorted

part, the whole list is sorted

Insertion Sort Example

Problems of insertion sort

  If a small item is on the far right, to move the

item to its proper place on the left, all the

intervening items (between where it is and where

it should be) must be shifted one space right.

This is close to n copies, just for one item. The

average item must be moved n/2 spaces.

Therefore the performance of insertion sort is

O(n2).

Shell Sort

  Given a sequence of unsorted values, the Shell sort will sort separate

k subsequences

{A[0], A[0+k], A[0+2k],…}

{A[1], A[1+k], A[1+2k],…}

 ……

{A[k-1], A[(k-1)+k], A[(k-1)+2k],…}

 (k is known as the increment; each segment is sorted using insertion

sort method)

  Repeat the sort with a smaller value of k

  When k is reduced to one, a single segment, i.e., the list is sorted

Shell Sort Example

Shell Sort example (Cont.)

Shell Sort Example (Cont.)

Shell Sort Algorithm

void shellSort(int list [], int last)

{ int hold, k, i, walker;

 k=last/2; // increment is half of the list length

 while(k !=0) {

 for (i = k; i<=last; i++) {

 hold = list[i];

 walker = i - k;

 while(walker>=0 && hold<list[walker]) {

 list[walker+k] = list[walker];

 walker = walker - k;

 }

 list[walker+k]=hold; // insert hold in proper relative position

 }

 k = k / 2; // halve the increment

 }

 return;

} // shellSort

78 45 23 32 56 18

32

32 45 23 78 56 18

32 45 23 78 56 18

Bubble Sort

  Bubble sort method

  The list is divided into sorted and unsorted part

 At the beginning, the sorted part is empty and the whole

list is the unsorted part

  In each pass of the bubble sort, the smallest element is

bubbled from the unsorted sublist and moved to the

sorted sublist

Bubble Sort Algorithm

void bubbleSort (in list[], int last) {
 int i, j, temp;
 bool sorted = false;
 for (i=0; i <= last && !sorted; i++)
 for (j=last, sorted=true; j>i; j--)
 if (list [j] < list [j-1]) {

 sorted = false;

 temp = list[j];
 list[j]=list[j-1];

 list[j-1] = temp;
 } // if

 return;

} // bubbleSort swap

 8 23 78 45 56 32

i

j

Bubble Sort Algorithm

void bubbleSort (int list[], int last) {
 int i, j, temp;
 bool sorted = false;
 for (i=0; i <= last && !sorted; i++)
 for (j=last, sorted=true; j>i; j--)
 if (list [j] < list [j-1]) {

 sorted = false;

 temp = list[j];
 list[j]=list[j-1];

 list[j-1] = temp;
 } // if

 return;

} // bubbleSort swap

 8 23 32 45 56 78

i

Quick Sort

  Apply “divide and conquer” method

  The partition is done by selecting an element P called pivot

and the elements less than P are put in the left partition; the

elements greater than or equal to P are put in the right

partition; and the P is placed in its ultimately correct

location in the list

  The sorting continues by recursively sorting the left

partition followed by sorting the right partition

  The pivot can be selected arbitrarily (e.g. the first element

in the list) or, for a better performance, via some algorithm

(e.g. the median value of the left, the right, and the meddle

element of the list)

Quick Sort

Quick Sort

Whole Process of Quick Sort

Complexity of Quicksort

23

Analysis of quicksort for a list of length n

24

Break – Ten Minutes

25

Basic concepts for heaps

  Complete binary tree: a tree has the maximum of

entries for its height;
  Nearly complete tree: has the minimum height and

all nodes in the last level are placed on the left

26

Heap Definition

  A heap (max heap) is a binary tree with the

following properties:

  The tree is complete or nearly complete (shape

property)

  The key value of each node of the tree is greater than

or equal to the key value in each of its descendents

(order property)

Any subtrees of a

heap are heaps.

27

Valid Heaps

28

Invalid Heaps

29

Heap operations

  Insert a node to a heap

 Add the node to the end of the heap array

  Perform a reheapUP operation: re-establishes heap by

moving data in child up to correct location in the heap

array

  Delete a node from a heap

  Remove the node from the top of the heap array and

move the last element of the heap to the top temporally

  Perform a reheapDown operation: re-establishes heap

by moving data in root down to its correct location in

the heap

30

ReheapUp operation

To insert 25 into the

heap, add it at the
end first

31

ReheapDown operation

The last element was

moved to the root after
removed the top element.

32

Heap Data Structure

  The shape property of a

heap makes it

convenient to use an

array to implement a

heap rather than to use

pointer variables

  The data in the array

corresponds to the

breadth -first traversal.

33

Heap Data Structure

  Calculate children's indexes:

  give a node at index i, the left child is in location 2*i

+1 and the right child in 2*i+2.

  if the number of nodes of the heap is less than 2*i+1,

 node-i doesn’t have a child

  Calculate parent's index:

  given a node at index i, the parent of the node is

located at (i-1)/2.

34

Heap Data Structure

  Calculate siblings' indexes:

 Given the index for left child j, its right sibling, if

any, is found at j+1;

  given right child at j, its left sibling is at j-1

  Given the size N, of a complete heap, the

location of the first leaf is N/2; given the

location of the first leaf element, the location of

the last nonleaf element is 1 less

35

From selection sort to heap Sort

  Selection sort: sorting an array in ascending order

  Select the smallest element from the array and swap with the element at the

first position.

  Select the second smallest element from the rest of the array and swap with

the element at the second position

  The complexity of selection sort is O(n2).

  Heap sort:

  Convert the array of unsorted data into a heap.

  Exchange the root (the largest number) with the last element.

  Reduce the size of the array by 1 and reheapDown the new array.

  Do the same with the new array.

  The complexity of heap sort is O(nlog2n).

36

Selection Sort

37

Heap Sort

38

void heapSort(int list[], int last){

 int sorted, holdData, walker;

 // Create a heap

 for (walker = 1; walker <= last; walker++)

 reheapUp (list, walker); //Heap created. Now sort it.

 sorted = last;

 while (sorted > 0) {

 holdData = list[0];

 list[0] = list[sorted];

 list[sorted] = holdData;

 sorted--;

 reheapDown (list, 0, sorted);

 } // while

 return;

} // heapSort

Heap Sort

Analysis: Heapsort

  Given L a list of n elements where n > 0

  Worst case

 Number of key comparisons to sort L

» 2nlog2n + O(n)

 Number of item assignments to sort L

» nlog2n + O(n)

  Average number of comparisons to sort L

  O(nlog2n)

  Heapsort takes twice as long as quicksort in

average but improve the worse case significantly.

39

40

Heap Applications: priority queue

 A heap is ready to

implement a priority

queue: the node with

highest priority is always

on the top of the heap and

is the first node to be

removed from the heap

  enqueue: insert the

node into the heap

  dequeue: remove the

top node for the

heap

n

n

Summary

  Search algorithms may require sorted data

  Several sorting algorithms available

  Selection sort, insertion sort, Shellsort, quicksort and

heapsort

  Compare algorithm performance through analysis

 Number of key comparisons

 Number of data movements

41

Reading

  Read textbook Chapter 10

  Download example code from vUWS and read it.

42

