
Lecture 11 

Sorting Algorithms 



Main Contents 

  Sorting problem 

  Insertion sorts 

  Review of straight insertion sort 

  Shell sort 

  Selection sorts 

  Review of straight selection sort 

 Heap sort 

  Exchange sorts 

  Review of straight bubble sort 

 Quick sort 



General Sort Concepts 

  Sorting algorithms: sort a set of data into numeric 

or alphabetic order (ascending or descending) 

according to the key of the data 

  Performance: time and space complexity 

  Time complexity is usually an estimation of the number 

of comparisons and moves required to sort a list 

  Space complexity is the estimation of required memory 

  Performance is assessed under different situations: 

worst case, best case and average case  



Typical sorting algorithms 



Algorithm Complexity of Simple Sorting 

  The actual steps of processing can be less than that of the worst 

case as given above; e.g. if a pass with no exchanges in bubble 

sort, the procedure can be terminated immediately 

3n(n-1)/2 

3(n-1) 

n(n-1)/2 

moves  

(worst case) 

O(n2) n(n-1)/2 bubbleSort 

O(n2) n(n-1)/2 selectionSort 

O(n2) n(n-1)/2 insertionSort 

comparisons 



Comparison of Sorting Algorithms  

Data Size  Bubble Sort Selection Insertion Shell Sort Quick Sort 

10,000 2,198 943 615 45 0 

15,000 4,895 2,159 1,378 55 10 

20,000 8,985 3,883 2,478 99 11 

25,000 13,898 6,037 3,895 156 5 

30,000 23,356 11,270 6,773 213 27 

35,000 15,045 8,304 280 44 

40,000 12,912 356 51 

50,000 578 43 

100,000 2,127 109 

500,000 560 

1,000,000 1,775 

•  Data were randomly generated.  

•  Ran on Pentium III 800 laptop. 
•  Time unit is millisecond.    



From insertion sort to shell sort  

  Insertion sort method 

 At the beginning the first element of the list forms the 

sorted part while the rest n-1 elements form the 

unsorted part 

  In each pass, the first element of the unsorted sublist is 

inserted into the sorted part at an appropriate position 

so that this part is still in sorted order 

 With all the elements being inserted into the sorted 

part, the whole list is sorted 



Insertion Sort Example 



Problems of insertion sort 

  If a small item is on the far right, to move the 

item to its proper place on the left, all the 

intervening items (between where it is and where 

it should be) must be shifted one space right. 

This is close to n copies,  just for one item. The 

average item must be moved n/2 spaces. 

Therefore the performance of insertion sort is 

O(n2). 



Shell Sort 

  Given a sequence of unsorted values, the Shell sort will sort separate 

k subsequences 


{A[0], A[0+k], A[0+2k],…} 


{A[1], A[1+k], A[1+2k],…}


  ……


{A[k-1], A[(k-1)+k], A[(k-1)+2k],…}


 ( k is known as the increment; each segment is sorted using insertion 

sort method)


  Repeat the sort with a smaller value of k


  When k is reduced to one, a single segment, i.e., the list is sorted




Shell Sort Example 



Shell Sort example (Cont.) 



Shell Sort Example (Cont.) 



Shell Sort Algorithm 

void shellSort(int list [], int last) 

{  int hold, k, i, walker; 

 k=last/2; // increment is half of the list length 

 while(k !=0) { 

      for (i = k; i<=last; i++)  {                  

              hold = list[i]; 

    walker = i - k; 

              while(walker>=0 && hold<list[walker]) { 

         list[walker+k] = list[walker];  

         walker = walker - k; 

    }  

    list[walker+k]=hold; // insert hold in proper relative position  

      }  

      k = k / 2; // halve the increment 

 }  

    return; 

} // shellSort 
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Bubble Sort 

  Bubble sort method 

  The list is divided into sorted and unsorted part 

 At the beginning, the sorted part is empty and the whole 

list is the unsorted part 

  In each pass of the bubble sort, the smallest element is 

bubbled from the unsorted sublist and moved to the 

sorted sublist 





Bubble Sort Algorithm 

void bubbleSort (in list[], int last) {   
 int i, j, temp; 
 bool sorted = false; 
 for (i=0; i <= last && !sorted; i++) 
  for (j=last, sorted=true; j>i; j--) 
        if (list [j] < list [j-1])  { 

         sorted = false; 

         temp = list[j];  
         list[j]=list[j-1]; 

         list[j-1] = temp; 
        } // if 

 return; 

} // bubbleSort swap 

 8  23 78 45 56 32 

i 

j 



Bubble Sort Algorithm 

void bubbleSort (int list[], int last) {  
 int i, j, temp; 
 bool sorted = false; 
 for (i=0; i <= last && !sorted; i++) 
  for (j=last, sorted=true; j>i; j--) 
        if (list [j] < list [j-1])  { 

         sorted = false; 

         temp = list[j];  
         list[j]=list[j-1]; 

         list[j-1] = temp; 
        } // if 

 return; 

} // bubbleSort swap 

 8  23 32 45 56 78 

i 



Quick Sort 

  Apply “divide and conquer” method 

  The partition is done by selecting an element P called pivot 

and the elements less than P are put in the left partition; the 

elements greater than or equal to P are put in the right 

partition; and the P is placed in its ultimately correct 

location in the list 

  The sorting continues by recursively sorting the left 

partition followed by sorting the right partition  

  The pivot can be selected arbitrarily (e.g. the first element 

in the list) or, for a better performance, via some algorithm 

(e.g. the median value of the left, the right, and the meddle 

element of the list)   



Quick Sort 



Quick Sort 



Whole Process of Quick Sort 



Complexity of Quicksort 

23 

Analysis of quicksort for a list of length n 



24 

Break – Ten Minutes 
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Basic concepts for heaps 

  Complete binary tree: a tree has the maximum of 

entries for its height;  
  Nearly complete tree: has the minimum height and 

all nodes in the last level are placed on the left  



26 

Heap Definition 

  A heap (max heap) is a binary tree with the 

following properties: 

  The tree is complete or nearly complete (shape 

property) 

  The key value of each node of the tree is greater than 

or equal to the key value in each of its descendents 

(order property) 

Any subtrees of a 

heap are heaps. 
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Valid Heaps  



28 

Invalid Heaps 
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Heap operations 

  Insert a node to a heap 

 Add the node to the end of the heap array 

  Perform a reheapUP operation: re-establishes heap by 

moving data in child up to correct location in the heap 

array 

  Delete a node from a heap 

  Remove the node from the top of the heap array and 

move the last element of the heap to the top temporally 

  Perform a reheapDown operation: re-establishes heap 

by moving data in root down to its correct location in 

the heap 



30 

ReheapUp operation 

To insert 25 into the 

heap, add it at the 
end first 
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ReheapDown operation 

The last element was 

moved to the root after 
removed the top element. 
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Heap Data Structure 

  The shape property of a 

heap makes it 

convenient to use an 

array to implement a 

heap rather than to use 

pointer variables    

  The data in the array 

corresponds to the 

breadth -first traversal.  



33 

Heap Data Structure 

  Calculate children's indexes: 

  give a node at index i, the left child is in location 2*i

+1 and the right child in 2*i+2. 

  if the number of nodes of the heap is less than 2*i+1,  

 node-i doesn’t have a child 

  Calculate parent's index:  

  given a node at index i, the parent of the node is 

located at (i-1)/2.  
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Heap Data Structure 

  Calculate siblings' indexes: 

 Given the index for left child j, its right sibling, if 

any, is found at j+1;  

  given right child at j, its left sibling is at j-1 

  Given the size N, of a complete heap, the 

location of the first leaf is N/2; given the 

location of the first leaf element, the location of 

the last nonleaf element is 1 less  



35 

From selection sort to heap Sort 

  Selection sort: sorting an array in ascending  order 

  Select the smallest element from the array and swap with the element at the 

first position. 

  Select the second smallest element from the rest of the array and swap with 

the element at the second position 

  The complexity of selection sort is O(n2). 

  Heap sort:  

  Convert the array of unsorted data into a heap. 

  Exchange the root (the largest number) with the last element. 

  Reduce the size of the array by 1 and reheapDown the new array.  

  Do the same with the new array. 

  The complexity of heap sort is O(nlog2n). 
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Selection Sort 



37 

Heap Sort 
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void heapSort(int  list[], int  last){ 

 int sorted, holdData, walker; 

  // Create a heap   

 for (walker = 1; walker <= last; walker++)        

  reheapUp (list, walker); //Heap created. Now sort it. 

   

 sorted = last;  

 while (sorted > 0)     {       

  holdData = list[0];       

  list[0] = list[sorted];       

  list[sorted] = holdData;       

  sorted--;       

  reheapDown (list, 0, sorted);      

 } // while    

 return; 

}  // heapSort  

Heap Sort 



Analysis: Heapsort 

  Given L a list of n elements where n > 0 

  Worst case 

 Number of key comparisons to sort L 

» 2nlog2n + O(n) 

 Number of item assignments to sort L 

» nlog2n + O(n) 

  Average number of comparisons to sort L 

   O(nlog2n) 

  Heapsort takes twice as long as quicksort in 

average but improve the worse case significantly. 

39 



40 

Heap Applications: priority queue 

    A heap is ready to 

implement a priority 

queue: the node with 

highest priority is always 

on the top of the heap and 

is the first node to be 

removed from the heap 

  enqueue: insert the 

node into the heap 

  dequeue: remove the 

top node for the 

heap  

n 

n 



Summary 

  Search algorithms may require sorted data 

  Several sorting algorithms available 

  Selection sort, insertion sort, Shellsort, quicksort and 

heapsort 

  Compare algorithm performance through analysis 

 Number of key comparisons 

 Number of data movements 
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Reading 

  Read textbook Chapter 10 

  Download example code from vUWS and read it. 

42 


