
Lecture 9

Searching Algorithms
Basic concepts of Trees

  Typical search algorithms on a linear list:
  Sequential search for unsorted data
  Binary search for sorted data

  Basic tree concepts
  Binary trees
  3 commonly used traversal strategies for

binary trees
  Convert a general tree into a binary tree

Main Content of the Lecture

Sequential Search Analysis

  Efficiency: Count number of key comparisons
  Best case: make one key comparison
 Worst case: algorithm makes n comparison.

for (loc = 0; loc < length;
loc++)
 if (list[loc] == item) {
 found = true;
 break;
 }

Sequential Search Analysis

  Average number of comparisons

The efficiency then is O(n)

Binary Search
  Performed only on ordered lists
  Uses divide-and-conquer technique

List of length 12

Search list, list[0]...list[11]

Search list, list[6]...list[11]

Binary search algorithm

Binary search

Values of first, last, and mid and the
number of comparisons for search item 34

Binary search

Values of first, last, and mid and the number of
comparisons for search item 22

Efficiency of searching algorithms

  Sequential search: O(n)
  Binary search: O(log2n)

Number of comparisons on average for a list of length n

n/2
n/4
n/8
n/16
…
n/2k = 1

k

n = 2k
k = log2n

Number of loops

Note that it makes more sense to
estimate efficiency of an algorithm
by the Big-O notation than by the
actual number of operations. In
many cases, the actual number of
operations is too complicated to
compute.

Other efficient searching techniques

  Hashing
  Binary search trees

Trees
A tree consists of:
  a set of elements,

called nodes;
  a set of directed

lines, called
branches.

  root: indegree is
zero.

  leaf: outdegree is
zero.

root

nodes
branches

leaves
outdegree is

3
indegree is 1

Basic Concepts of Trees

  The number of branches associated with a node is
the degree of the node
  Indegree branch: directed toward the node
 Outdegree branch: directed away from the node

  Family relationship
  parent: a node having successor nodes
  child: a node with predecessors
  siblings: two or more nodes with the same parent
  ancestor and descendant

Basic Concepts of Trees…

  A path is a sequence of nodes in which each
node is adjacent to the next one.

  Level of a node: its distance from the root.
  The level of the root is 0;
  The level of other nodes are always one greater than

its parent
  Height of a tree: the level of the leaf in the

longest path from the root plus 1.
  the height of an empty tree is -1.

Basic Concepts of Trees

Recursive definition of trees
  A tree is a collection of objects called nodes and is

defined recursively as follows:
 An empty set is a tree, called empty tree
  If T1, T2, …Tn are n trees and R is a node, then the

set T containing R and the n trees is a tree. Within the
tree, R is called the root of T and the n trees are
called subtrees.

16

Recursive definition of trees

T = {A, {B, {C, D}}, {E}, {F, {H}, {G}, {I}}}

17

Examples of Trees…

family tree

18

Binary Trees

  Binary trees are trees where the maximum
outdegree of any node is two, i.e., can’t have
more than two subtrees (designated as the left
subtree and the right subtree)

  Binary tree node structure

data

data data

tempate <class elemType>
struct binaryTreeNode {
 elemType data;
 binaryTreeNode<elemType> *leftChild;
 binaryTreeNode<elemType> *rightChild;
};

19

Why use binary trees?

  Major data structure operations: searching,
insertion, deletion.

  Ordered array: fast in search(binary search),
slow in insertion and deletion (shift elements).

  Linked list: fast in insertion and deletion, slow
in search (no binary search).

  Binary tree: fast in all operations.

20

Transforming a linked list to a binary tree

2 10 5 7 25

2

10 5

7 25

21

Transforming a general tree to a binary tree

A

B C D

F G H

I J K

E

A

B

C

D

E

F

G

H I

J

K

22

Search and traversal in a tree

  Breadth-first traversal: proceed level by level
visiting the whole breadth of a level before going
down to the next level.

  Depth-first traversal: always go as deep as we
can to visit the next node.

A

B C D

E F G H I

A

B C D

E F G H I

23

Binary Tree Traversals
  In the case of binary trees, only three traversal strategies

are commonly used; all of them belong to depth-first
methods:
  Pre-order (NLR) : Visit the root, then its left subtree,

and finally right subtree
  In-order (LNR) : Visit the left subtree, then the root,

and finally its right subtree
  Post-order (LRN) : visit the left subtree, the right

subtree, and finally the root

24

Binary Tree Traversals…

25

Binary Tree Traversals…

  Algorithms of traversals

template<class TYPE>
void BinaryTree<TYPE>::inorder(binaryTreeNode<TYPE> *treePtr)
{
 if (treePtr != NULL) {

 inorder(treePtr->leftChild);
 visit(treePtr->data);
 inorder(treePtr->rightChild);
 }
} // end inorder

26

Binary tree implementation

  Tree node
  Binary tree Operations

  isEmpty()
  inorderTraversal()
  preorderTraversal()
  postorderTraversal()
  treeHeight()
  treeNodeCount()
  treeLeavesCount()

Read code: binaryTree.h

Binary Search Trees

  Data in each node
  Larger than the data in its left child
  Smaller than the data in its right child

27

Binary search tree Arbitrary binary tree

Binary Search Trees

  A binary search tree, T, is either empty or the
following is true:
  T has a special node called the root node
  T has two sets of nodes, LT and RT , called the left

subtree and right subtree of T, respectively
  The key in the root node is larger than every key in the

left subtree and smaller than every key in the right
subtree

  LT and RT are binary search trees

28

Operations on binary Search Trees

  Operations performed on a binary search tree
  Search the binary search tree for a particular item
  Insert an item in the binary search tree
 Delete an item from the binary search tree
  Find the height of the binary search tree
  Find the number of nodes in the binary search tree
  Find the number of leaves in the binary search tree
  Traverse the binary search tree
  Copy the binary search tree

29

Operations that can be inherited from binary trees

  Every binary search tree is a binary tree
  Height of a binary search tree

 Determined the same way as the height of a binary tree

  Operations to find number of nodes, number of
leaves, to do inorder, preorder, postorder traversals
of a binary search tree
  Same as those for a binary tree

» Can inherit functions

30

Implementation

  class bSearchTreeType
  Illustrates basic operations to implement a binary

search tree
  Function search
  Function insert
  Function delete

31

Read code: BinarySearchTree.h

Reading

  Read textbook Chapter 9 (first half).
  Read textbook Chapter 11 (first half)
  Download the demonstration code for practice at

home.

32

