
Lecture 10

Binary Search Trees, AVL Trees
and B-Trees

2

  Binary search trees

  AVL trees

  B-trees

Main Content of the Lecture

Binary Search Trees

 A binary search tree (BST) is a binary tree with

its nodes arranged in such way so as to maintain

a special ordering: the element stored in the root

is greater than any elements in its left subtree

and less than or equal to any elements in its right

subtree

3

Properties of BSTs: Min and Max

  The smallest (largest) node: always at the left

(right) leaf of its left-subtree (right-subtree)

4

Properties of BSTs: to order list

 BSTree traversal: inorder traversal of a BST

produces an ordered list

5

12 18 20 23 35 44 52

BST is a

representation of

order array

Complexity of search

  BST search: the time complexity of searching a

BST with N nodes can be of O(log2N) if the tree is

well balanced (as good as binary search).

6

target = 20

target = 42

BST node insertion

7

All BST

inserts take

place at a leaf

Insertion Complexity

  Insert a node: the time complexity of inserting a

node into an N nodes BST can be of O(log2N) if

the tree is well balanced (better than ordered

array).

8

42

BST node deletion

9

delete 44

case 1

case 2

BST node deletion
10

case 3

case 4

Complexity of node deletion

  Delete a node: the time complexity of deleting a

node from an N nodes BST can be of O(log2N) if

the tree is well balanced (better than ordered

array).

  The worst case is that the node to be deleted has two

subtrees

 find the largest node in the left subtree (or the

smallest node in the right subtree) to replace the

deleted node

11

AVL (Height-Balanced) Trees

  AVL tree (height-balanced tree)

  Resulting binary search is nearly balanced

  Perfectly balanced binary tree

 Heights of left and right subtrees of the root: equal

  Left and right subtrees of the root are perfectly

balanced binary trees

12

Perfectly balanced binary tree

Balanced Trees

  Problems of BST: the time complexity of

search, inserting and deleting with a BST can

vary between O(log2n) and O(n).

  Unbalanced BST could cause the complexity to

be O(n), so we may get no benefits by using

BST compared with linear data structures.

  The problem becomes how to make a BST to be

balanced.

13

Example: Unbalanced & Balanced Trees
14

Measurement of balance
15

HL: the height of left subtree

HR: the height of right

subtree

Balance factor: BF = HL-HR,

i.e. the height of left

subtree minus the height

of right subtree

Make a BST to be more balanced
16

After the

rebalancing, the

trees are still BST.

The data are still

stored in the same

places. The only

difference is the

data linked in a

different way.

AVL Trees

  An AVL tree (or height-balanced BST) is a

binary search tree such that

  The heights of the left and right subtrees of the root

differ by at most one, i.e. |BF| =|HL-HR| ≤ 1.

  each subtree of the tree is an AVL tree.

  AVL tree is named after G. M. Adelson-Velskii

and E. M. Landis.

17

Example of AVL tree

18

Causes of unbalance

  Insert a node to or delete a node from a balanced
BSTree may cause the tree to be unbalanced.

  All unbalanced trees fall into one of four cases

  Case 1: left of left -- out of balance condition is
created by a LH subtree of a LH tree

  Case 2: right of right -- mirror of Case 1

  Case 3: right of left -- out of balance condition is
created by a RH subtree of a LH tree

  Case 4: left of right: mirror of Case 3

19

Unbalanced Trees: Case 1 &2

20

Where LH: left high, i.e., BF=1,
 RH: right high, i.e., BF= -1,
 EH: even high, i.e., BF= 0.

Unbalanced Trees: Case 3 & 4

21

Where LH: left high, i.e., BF=1,
 RH: right high, i.e., BF= -1,
 EH: even high, i.e., BF= 0.

Balancing Trees by Rotate Nodes

 An unbalanced tree can be rebalanced by

rotating some nodes of the tree

 Left of left: a single left rotation

 Right of right: a single right rotation

 Right of left: double rotations, rotate left and

then rotate right

 Left of right: double rotations, rotate right and

then rotate left

22

Single Rotation (right)

23

Single Rotation (left)

24

Double Rotation (left-right)

25

Double Rotation (right-left)

26

Insertion

  First search the tree and find the place where the

new item is to be inserted

  If the item is already in tree, insertion fails.

  If item is not in AVL tree, search ends at an empty

subtree; insert the item there

  After inserting new item in the tree

  Resulting tree might not be an AVL tree. If so, use

rotations to rebalance the tree.

27

Insertion

28

AVL tree before and after inserting 90

AVL tree before and after inserting 75

Right of right

Turn left

RH

RH

RH

LH

Left of right

Turn right

then turn left

29

Insertion

Right of right

Turn left

AVL tree before and after inserting 95

RH

RH

Deletion from AVL Trees

  Four cases

  Case 1: The node to be deleted is a leaf

  Case 2: The node to be deleted has no right child, that

is, its right subtree is empty

  Case 3: The node to be deleted has no left child, that is,

its left subtree is empty

  Case 4: The node to be deleted has a left child and a

right child (much harder to deal with)

30

Read Code AVL_ADT.h

Animated AVL Tree.webarchive

AVL tree ADT implementation

  AVL node

template <class TYPE>

Struct NODE {

 TYPE data;

 NODE *left;

 NODE *right;

 int bal;

};

31

data

bal

Read Code AVL_ADT.h

Complexity of AVL tree operations

  If an AVL tree has n nodes, the search, insertion,

deletion take O(log n) time. Thus an AVL tree provides

high efficiency for all the common data-storage

operations.

Operations Unordered

array

Ordered

array

Linked

list

AVL Tree

Search O(n) O(log n) O(n) O(log n)

Insert O(n) O(n) O(1) O(log n)

Delete O(n) O(n) O(n) O(log n)

32

Both insertion and deletion require search operations.

B-Trees

  An AVL tree reduces search space by half each time. Can
we do even better?

  m-way search tree:

  Each node has at most m children and at most m-1
items of data each with a unique key

  The keys in each node are in ascending order

  The keys in the first i children are smaller than the ith
key.

  The keys in the last m-i children are larger than the ith
key.

 All subtrees, if any, of the root are m-way search trees.

33

A 4-way tree

34

50 60 80

30 35 58 59 63 70 73

52 54 61 62

55 56

100

57

63 70 73

Structure of a node

4 pointers

3 data items

B-Trees

  B-tree of order m

 m-way search tree

  Either empty or has the following properties:

35

A B-tree of order 4

Typical B-Tree operations

  Search the tree for a key

  Insert a data item

  Delete a data item

  Traverse the tree

36

See demonstration: B-Tree_Operation.webarchive

Summary

  Binary trees: each node has at most two children

  Binary search trees: ordered binary trees

  AVL trees: balanced binary search trees

  B-trees: generated AVL trees that allow more than

two children.

37

