
Lecture 10 

Binary Search Trees, AVL Trees 
and B-Trees 
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  Binary search trees 

  AVL trees 

  B-trees 

Main Content of the Lecture 



Binary Search Trees  

 A binary search tree (BST) is a binary tree with 

its nodes arranged in such way so as to maintain 

a special ordering: the element stored in the root 

is greater than any elements in its left subtree 

and less than or equal to any elements in its right 

subtree 
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Properties of BSTs: Min and Max 

  The smallest (largest) node: always at the left 

(right) leaf of its left-subtree (right-subtree) 
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Properties of BSTs: to order list 

 BSTree traversal: inorder traversal of a BST 

produces an ordered list 

5 

12 18 20 23 35 44 52 

BST is a 

representation of 

order array 



Complexity of search  

  BST search: the time complexity of searching a 

BST with N nodes can be of O(log2N) if the tree is 

well balanced (as good as binary search). 
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target = 20 

target = 42 



BST node insertion 
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All BST 

inserts take 

place at a leaf 



Insertion Complexity 

  Insert a node: the time complexity of inserting a 

node into an N nodes BST can be of O(log2N) if 

the tree is well balanced (better than ordered 

array). 
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42 



BST node deletion 
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delete 44 

case 1 

case 2 



BST node deletion 
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case 3 

case 4 



Complexity of node deletion 

  Delete a node: the time complexity of deleting a 

node from an N nodes BST can be of O(log2N) if 

the tree is well balanced (better than ordered 

array). 

  The worst case is that the node to be deleted has two 

subtrees 

 find the largest node in the left subtree (or the 

smallest node in the right subtree) to replace the 

deleted node  
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AVL (Height-Balanced) Trees 

  AVL tree (height-balanced tree)  

  Resulting binary search is nearly balanced 

  Perfectly balanced binary tree 

 Heights of left and right subtrees of the root: equal 

  Left and right subtrees of the root are perfectly 

balanced binary trees 
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Perfectly balanced binary tree 



Balanced Trees 

  Problems of BST: the time complexity of 

search, inserting and deleting with a BST can 

vary between O(log2n) and O(n). 

  Unbalanced BST could cause the complexity to 

be O(n), so we may get no benefits by using 

BST compared with linear data structures. 

  The problem becomes how to make a BST to be 

balanced. 

13 



Example: Unbalanced & Balanced Trees 
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Measurement of balance 
15 

HL: the height of left subtree 

HR: the height of right 

subtree 

Balance factor: BF = HL-HR, 

i.e. the height of left 

subtree minus the height 

of right subtree 



Make a BST to be more balanced 
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After the 

rebalancing, the 

trees are still BST. 

The data are still 

stored in the same 

places. The only 

difference is the 

data linked in a 

different way.   



AVL Trees 

  An AVL tree (or height-balanced BST) is a 

binary search tree such that 

  The heights of the left and right subtrees of the root 

differ by at most one, i.e. |BF| =|HL-HR| ≤ 1. 

  each subtree of the tree is an AVL tree. 

  AVL tree is named after G. M. Adelson-Velskii 

and E. M. Landis. 
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Example of AVL tree 
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Causes of unbalance 

  Insert a node to or delete a node from a balanced 
BSTree may cause the tree to be unbalanced. 

  All unbalanced trees fall into one of four cases 

  Case 1: left of left -- out of balance condition is 
created by a LH subtree of a LH tree 

  Case 2: right of right -- mirror of Case 1 

  Case 3: right of left -- out of balance condition is 
created by a RH subtree of a LH tree  

  Case 4: left of right: mirror of Case 3 
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Unbalanced Trees: Case 1 &2 
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Where LH: left high, i.e., BF=1,  
 RH: right high, i.e., BF= -1,  
 EH: even high, i.e., BF= 0. 



Unbalanced Trees: Case 3 & 4 
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Where LH: left high, i.e., BF=1,  
 RH: right high, i.e., BF= -1,  
 EH: even high, i.e., BF= 0. 



Balancing Trees by Rotate Nodes 

 An unbalanced tree can be rebalanced by 

rotating some nodes of the tree   

 Left of left: a single left rotation 

 Right of right: a single right rotation 

 Right of left: double rotations, rotate left and 

then rotate right 

 Left of right: double rotations, rotate right and 

then rotate left 
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Single Rotation (right) 
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Single Rotation (left) 
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Double Rotation (left-right) 
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Double Rotation (right-left) 
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Insertion 

  First search the tree and find the place where the 

new item is to be inserted 

  If the item is already in tree, insertion fails. 

  If item is not in AVL tree, search ends at an empty 

subtree; insert the item there 

  After inserting new item in the tree 

  Resulting tree might not be an AVL tree. If so, use 

rotations to rebalance the tree. 

27 



Insertion 
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AVL tree before and after inserting 90 

AVL tree before and after inserting 75 

Right of right 

Turn left 

RH 

RH 

RH 

LH 

Left of right 

Turn right 

then turn left 
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Insertion 

Right of right 

Turn left 

AVL tree before and after inserting 95 

RH 

RH 



Deletion from AVL Trees 

  Four cases 

  Case 1: The node to be deleted is a leaf 

  Case 2: The node to be deleted has no right child, that 

is, its right subtree is empty 

  Case 3: The node to be deleted has no left child, that is, 

its left subtree is empty 

  Case 4: The node to be deleted has a left child and a 

right child (much harder to deal with) 
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Read Code AVL_ADT.h 

Animated AVL Tree.webarchive 



AVL tree ADT implementation 

  AVL node 

template <class TYPE> 

Struct NODE { 

 TYPE  data; 

 NODE  *left; 

 NODE  *right; 

 int   bal; 

}; 
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data 

bal 

Read Code AVL_ADT.h 



Complexity of AVL tree operations 

  If an AVL tree has n nodes, the search, insertion, 

deletion take O(log n) time. Thus an AVL tree provides 

high efficiency for all the common data-storage 

operations. 

Operations Unordered 

array 

Ordered 

array 

Linked 

list 

AVL Tree 

Search O(n) O(log n) O(n) O(log n) 

Insert  O(n) O(n) O(1) O(log n) 

Delete O(n) O(n) O(n) O(log n) 
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Both insertion and deletion require search operations. 



B-Trees 

  An AVL tree reduces search space by half each time.  Can 
we do even better? 

  m-way search tree: 

  Each node has at most m children and at most m-1 
items of data each with a unique key 

  The keys in each node are in ascending order  

  The keys in the first i children are smaller than the ith 
key. 

  The keys in the last m-i children are larger than the ith 
key. 

 All subtrees, if any, of the root are m-way search trees. 

33 



A 4-way tree 
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50 60 80 

30 35 58 59 63 70 73 

52 54 61 62 

55 56 

100 

57 

63 70 73 

Structure of a node 

4 pointers 

3 data items  



B-Trees 

  B-tree of order m 

 m-way search tree 

  Either empty or has the following properties: 
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A B-tree of order 4 



Typical B-Tree operations 

  Search the tree for a key 

  Insert a data item 

  Delete a data item 

  Traverse the tree 
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See demonstration: B-Tree_Operation.webarchive 



Summary 

  Binary trees: each node has at most two children 

  Binary search trees: ordered binary trees 

  AVL trees: balanced binary search trees 

  B-trees: generated AVL trees that allow more than 

two children. 
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